Structural modification induced in heparin by a Fenton-type depolymerization process.

نویسندگان

  • Elena Vismara
  • Monica Pierini
  • Sara Guglieri
  • Lino Liverani
  • Giuseppe Mascellani
  • Giangiacomo Torri
چکیده

A low molecular weight heparin (LMWH) obtained by a depolymerization process induced by a Fenton-type reagent was characterized in depth by nuclear magnetic resonance (NMR) spectroscopy. The depolymerization involves the cleavage of glycosidic bonds, leading to natural terminal reducing end residues, mainly represented by N-sulfated glucosamine (A (NS)). Natural uronic acids, especially the 2- O-sulfate iduronic acid (I (2S)), are also present as reducing residues. A peculiar reaction results, such as the disappearance of the nonsulfated iduronic acid residues when followed by 6-O-nonsulfated glucosamine, and the decrease of the glucuronic acid when followed by the N-acetylglucosamine, were observed. Iduronic acid residues, followed by 6- O-sulfate glucosamine (A (Nx,6S)), and the glucuronic acid residues, followed by A (NS) residues, were not modified. A few minor internal chain modifications occur, possibly arising from oxidative breaking of the bond between C2-C3 of glucosamine and uronic acids, suggested by evidence of formation of new -COR groups. Finally, no change was observed in the content of the N-sulfated, 6-O-sulfated glucosamine bearing an extra sulfate on 3-O, which is considered the marker of the active site for antithrombin. With respect to the original heparin, this LMWH is characterized by a lower number of nonsulfated uronic acid residues, and as a consequence, by a lower degree of structural heterogeneity than LMWHs prepared with other procedures.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Depolymerization of Fucosylated Chondroitin Sulfate with a Modified Fenton-System and Anticoagulant Activity of the Resulting Fragments

Fucosylated chondroitin sulfate (fCS) from sea cucumber Isostichopus badionotus (fCS-Ib) with a chondroitin sulfate type E (CSE) backbone and 2,4-O-sulfo fucose branches has shown excellent anticoagulant activity although has also show severe adverse effects. Depolymerization represents an effective method to diminish this polysaccharide's side effects. The present study reports a modified cont...

متن کامل

Structure and activity of a new low-molecular-weight heparin produced by enzymatic ultrafiltration.

The standard process for preparing the low-molecular-weight heparin (LMWH) tinzaparin, through the partial enzymatic depolymerization of heparin, results in a reduced yield because of the formation of a high content of undesired disaccharides and tetrasaccharides. An enzymatic ultrafiltration reactor for LMWH preparation was developed to overcome this problem. The behavior, of the heparin oligo...

متن کامل

On-line separation and characterization of hyaluronan oligosaccharides derived from radical depolymerization.

Hydroxyl radicals are widely implicated in the oxidation of carbohydrates in biological and industrial processes and are often responsible for their structural modification resulting in functional damage. In this study, the radical depolymerization of the polysaccharide hyaluronan was studied in a reaction with hydroxyl radicals generated by Fenton Chemistry. A simple method for isolation and i...

متن کامل

Unfractionated and low molecular weight heparin

Background Unfractionated heparin (UFH) is mostly obtained from porcine and bovine mucosa and has been widely used for the treatment and prevention of thrombotic events. It consists of molecular chains of various lengths varying from 2000 to 40,000 Da [1]. Low molecular weight heparins (LMWHs) are smaller chains of UFH that can be obtained, from unfractionated heparin, by various chemical and e...

متن کامل

Fenton Depolymerization of Cellulosic Biomass in Modified Cuprammonium Solution

This preliminary study developed a novel cellulose pretreatment method for cost-effective cellulosic utilization using a modified cuprammonium solution as a solvent to dissolve cellulose followed by molecular oxygen/Fenton depolymerization. The modified cuprammonium solution is composed of cuprammonium solution and a special catalyst that could efficiently enhance cellulosic oxygen sensitivity ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Seminars in thrombosis and hemostasis

دوره 33 5  شماره 

صفحات  -

تاریخ انتشار 2007